
Journal of Computational Physics 227 (2008) 9628–9642
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
An evaluation of explicit time integration schemes for use with the
generalized interpolation material point method

P.C. Wallstedt, J.E. Guilkey *

Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, United States
a r t i c l e i n f o

Article history:
Received 7 March 2008
Received in revised form 18 July 2008
Accepted 23 July 2008
Available online 13 August 2008

PACS:
02.70.Ns
02.70.Dh
52.65.Rr
07.05.Tp

Keywords:
Material point method
Manufactured solutions
Time integration
MPM
GIMP
MMS
PIC
0021-9991/$ - see front matter � 2008 Elsevier Inc
doi:10.1016/j.jcp.2008.07.019

* Corresponding author. Tel.: +1 801 581 8709.
E-mail address: james.guilkey@utah.edu (J.E. Gu
a b s t r a c t

The stability and accuracy of the generalized interpolation material point (GIMP) Method is
measured directly through carefully-formulated manufactured solutions over wide ranges
of CFL numbers and mesh sizes. The manufactured solutions are described in detail. The
accuracy and stability of several time integration schemes are compared via numerical
experiments. The effect of various treatments of particle ‘‘size” are also considered. The
hypothesis that GIMP is most accurate when particles remain contiguous and non-overlap-
ping is confirmed by comparing manufactured solutions with and without this property.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The generalized interpolation material point (GIMP) method is a particle-in-cell method for solid mechanics applications,
described by Bardenhagen and Kober [1], that is an extension of the material point method (MPM) of Sulsky et al. [2]. MPM
and GIMP have been studied and used by numerous investigators, a subset of these important contributions include: analysis
of time integration properties by Bardenhagen [3]; membranes and fluid–structure interaction by York, Sulsky and Schreyer
[4,5]; implicit time integration by Guilkey and Weiss [6], as well as Sulsky and Kaul [7]; conservation properties and plas-
ticity by Love and Sulsky [8,9]; contact by Bardenhagen et al. [10]; cracks and fracture by Nairn [11].

MPM and GIMP are convenient because they allow easy discretization of complex geometries, fast and straightforward
contact treatments, robustness under large deformations and relative ease of parallel implementation.

However, the family of GIMP methods, including MPM, has largely defied the types of rigorous analysis that have been
applied to say, the finite element method (FEM). This is due, at least in part, to the mixed Eulerian–Lagrangian nature of
the method, in which particles carry all state data, while the advancement of that state is carried out on the underlying grid,
often referred to as a computational ‘‘scratch pad”.
. All rights reserved.
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The standard GIMP implementation, in which particles are treated as blocks of material, as opposed to Dirac delta func-
tions, does a great deal to reduce the errors and instabilities that potentially arise as particle distributions become disor-
dered. Tracking of particle ‘‘corners”, described by Ma et al. [12] offers a vehicle by which to improve the size estimates
of GIMP particles. An enhanced scheme for projecting particle data to the grid was described by Wallstedt and Guilkey
[13] which both reduces the error in this operation, and also provides more predictable behavior.

Despite the significant value of these works, they do little to explore certain fundamental questions regarding the accu-
racy and stability of MPM and GIMP. The work of Bardenhagen [3] in particular, considers energy conservation in the face of
a particular choice of time integration strategy, but it does not consider how that choice affects accuracy or stability. Here,
we seek to build on that work, by studying the accuracy and stability of the time integration strategies described in [3] as
well as a centered-difference scheme as described in [14].

This paper is organized as follows: We first present a brief overview of MPM and GIMP, followed by a description of the
choices of time integration strategy. This includes a detailed exposition of the time evolution of a single vibrating particle,
which illustrates the non-linear nature of the discrete equations. Next, we describe the vehicle by which we have studied the
behavior of the strategies described here, namely, the method of manufactured solutions (MMS) [15–17]. Finally, we present
results from a series of numerical experiments, and from these, draw conclusions about the efficacies of the various
approaches.
2. Review of the generalized interpolation material point method

The material point method (MPM) was described by Sulsky et al. [2,18] as an extension to the FLIP (Fluid-implicit particle)
method of Brackbill [19], which itself is an extension of the particle-in-cell (PIC) method of Harlow [20]. Interestingly, the
name ‘‘material point method” first appeared in the literature two years later in a description of an axisymmetric form of
the method [21]. In both FLIP and MPM, the basic idea is the same: objects are discretized into particles, or material points,
each of which contains all state data for the small region of material that it represents. These particles are spatially Dirac
delta functions, meaning that the material that each represents is assumed to exist at a single point in space, namely the
position of the particle. A subset of the particle data, minimally mass and velocity, are projected onto a background grid that
is usually, although not necessarily, Cartesian. This projection is accomplished using weighting functions, also known as
shape functions or interpolation functions. These are typically, but not necessarily, linear, bilinear or trilinear in one, two
and three dimensions, respectively.

More recently, Bardenhagen and Kober [1] generalized the development that gives rise to MPM, and suggested that MPM
may be thought of as a subset of their ‘‘generalized interpolation material point” (GIMP) method. In the family of GIMP meth-
ods one chooses a characteristic function vp to represent the particles and a shape function Si as a basis of support on the
computational nodes. An effective shape function Sip is found by the convolution of the vp and Si which is written as:
SipðxpÞ ¼
1

Vp

Z
Xp\X

vpðx� xpÞSiðxÞdx: ð1Þ
While the user has significant latitude in choosing these two functions, in practice, the choice of Si is usually given (in one-
dimension) as,
SiðxÞ ¼
1þ ðx� xiÞ=h �h < x� xi 6 0
1� ðx� xiÞ=h 0 < x� xi 6 h

0 otherwise;

8><
>: ð2Þ
where xi is the vertex location, and h is the cell width, assumed to be constant in this investigation, although this is not a
general restriction on the method. Multi-dimensional versions are constructed by forming tensor products of the one-dimen-
sional version in the orthogonal directions.

When the choice of characteristic function is the Dirac delta,
vpðxÞ ¼ dðx� xpÞVp; ð3Þ
where xp is the particle position, and Vp is the particle volume, then traditional MPM is recovered. Typically, when an analyst
indicates that they are ‘‘using GIMP” this implies use of the linear grid basis function given in Eq. (2) and a ‘‘top-hat” char-
acteristic function, given by (in one-dimension),
vpðxÞ ¼ Hðx� ðxp � lpÞÞ � Hðx� ðxp þ lpÞÞ; ð4Þ
where HðxÞ is the Heaviside function (HðxÞ ¼ 0 if x < 0 and HðxÞ ¼ 1 if x P 0) and lp is the half-length of the particle. When
the convolution indicated in Eq. (1) is carried out using the expressions in Eqs. (2) and (4), a closed form for the effective
shape function can be written as
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SiðxpÞ ¼

ðhþlpþðxp�xiÞÞ2
4hlp

�h� lp < xp � xi 6 �hþ lp

1þ ðxp�xiÞ
h �hþ lp < xp � xi 6 �lp

1� ðxp�xiÞ2þl2p
2hlp

�lp < xp � xi 6 lp

1� ðxp�xiÞ
h lp < xp � xi 6 h� lp

ðhþlp�ðxp�xiÞÞ2
4hlp

h� lp < xp � xi 6 hþ lp

0 otherwise:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð5Þ
The gradient of the shape is
rSiðxpÞ ¼

hþlpþðxp�xiÞ
2hlp

�h� lp < xp � xi 6 �hþ lp

1
h �hþ lp < xp � xi 6 �lp

� ðxp�xiÞ
hlp

�lp < xp � xi 6 lp

� 1
h lp < xp � xi 6 h� lp

� hþlp�ðxp�xiÞ
2hlp

h� lp < xp � xi 6 hþ lp

0 otherwise:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð6Þ
There is one further consideration in defining the effective shape function, and that is whether or not the size (length in 1-D)
of the particle is kept fixed (denoted as ‘‘UGIMP” here) or is allowed to evolve due to material deformations (‘‘Finite GIMP” or
‘‘Contiguous GIMP” in (1) and ‘‘cpGIMP” here). In one-dimensional simulations, evolution of the particle (half-)length is
straightforward,
lnp ¼ Fn
pl0p; ð7Þ
where Fn
p is the deformation gradient at time n. In multi-dimensional simulations, a similar approach can be used, assuming

an initially rectangular or cuboid particle, to find the current particle shape. The difficulty arises in evaluating Eq. 1 for these
general shapes. One approach, apparently effective, has been to create a cuboid that circumscribes the deformed particle
shape [12]. Alternatively, one can assume that the particle size remains constant (insofar as it applies to the effective shape
function evaluations only). The error that this assumption introduces was demonstrated in [1] and will be further explored
below.

Regardless of the choice of particle characteristic function, the timestepping algorithm is an independent choice. In his
paper exploring energy conservation error, Bardenhagen [3] considered two possibilities which he denoted USF for ‘‘update
stress first” and USL for ‘‘update stress last”. As the names imply, these refer to the point within a timestep at which the par-
ticle stress is computed. While the original publications describing MPM used the USL scheme, USF came into use because it
had a particular practical advantage. Namely, the velocity field from which gradients are taken for use in computing the
stress is smoothly varying, having just been projected to the grid via interpolation functions. This improved the robustness
of the method. A general overview of an MPM (or GIMP) timestep is given here, advancing from time n to nþ 1, in which the
USF/USL distinction is described where appropriate.

The algorithm begins by a projection of the particle mass and momentum to the grid to form nodal masses and velocities.
If we adopt the shorthand that Sip ¼ SiðxpÞ, these can be written as
mi ¼
X

p

Sipmp; ð8Þ

vn
i ¼

P
p

Sipvn
pmp

mi
: ð9Þ
If the USF option is chosen, then gradients of vn
i are computed. These can be used to compute a strain increment for use in a

hypoelastic constitutive model. Alternatively, a deformation gradient on the particle can be updated for use in a hyperelastic
model. Additionally, the particle volume Vp is updated by multiplying the initial volume by the determinant of the deforma-
tion gradient
rvp ¼
X

i

rSipvn
i ; ð10Þ

Fnþ1
p ¼ ð1þrvpDtÞFn

p; ð11Þ
rnþ1

p ¼ rðFnþ1
p Þ; ð12Þ

Vnþ1
p ¼ V0

pjF
nþ1
p j: ð13Þ
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The internal force, f int
i , is computed at the nodes from the volume integral of the divergence of the particle stress. In the USF

case, this is based on the stress and volume that were just computed, while in the USL case, they are the values computed at
the end of the prior timestep. The time superscript is omitted here for generality,
f int
i ¼ �

X
p

rSip � rpVp: ð14Þ
Body forces and tractions are lumped into an external force term denoted by fext
i , and with this we can compute acceleration

on the grid by
ai ¼
f int

i þ fext
i

mi
: ð15Þ
This acceleration is used to update the grid velocity
v�i ¼ vn
i þ aiDt: ð16Þ
Material point positions and velocities are updated by
xnþ1
p ¼ xn

p þ
X

i

Sipv�i Dt; ð17Þ

vnþ1
p ¼ vn

p þ
X

i

SipaiDt: ð18Þ
Finally, if the USL algorithm is chosen, the velocity gradients at the particles are computed based on the v�i values:
rvp ¼
X

i

rSipv�i ; ð19Þ
and Eqs. (11)–(13) are evaluated here. An important alternate method for finding velocity gradients in MPM is discussed in
Section 4.
3. Development of discrete equations for a one-particle system

In attempting to analyze the stability and accuracy characteristics of competing time integration schemes, we construct
discrete equations for xnþ1

p ; vnþ1
p and Fnþ1

p in terms of these same time n quantities. We choose nearly the simplest possible
system, a single one-dimensional particle in a single computational cell, constrained on the left side. This is the same prob-
lem analyzed by Bardenhagen [3], and is depicted here in Fig. 1.

Following the steps outlined in Section 2, we begin by projecting the particle data to the computational nodes. Since this
is a one-dimensional scenario, bold facing of the variables is omitted. Because the left node is constrained, we can neglect it
and only consider the quantities on the right node, which will be denoted here by a subscript i. In this analysis, the standard
linear shape functions are used, which can be simplified for the current system as follows:
Sip ¼
xn

p

h
x < h: ð20Þ
Thus the lumped mass on the right node is
mi ¼ mp
xn

p

h

� �
; ð21Þ
Fig. 1. Time n configuration of a single particle system. Linear shape function for the rightmost node is also depicted.
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and the velocity is
vi ¼
mpvp

xn
p

h

� �
mi

¼ vp: ð22Þ
At this point, we will assume a USF formulation, and compute the new deformation gradient. This can be found via a recur-
sion relation
Fnþ1
p ¼ Fnþ1

n Fn
p; ð23Þ
where Fnþ1
n is the incremental deformation gradient from time n to n + 1. Eq. (23) can be rewritten as
Fnþ1
p ¼ ð1þrvpDtÞFn

p; ð24Þ
where the gradient of velocity on the particle, rvp, is as given by Eq. (10). For the present case, this is
rvp ¼
X

p

Gipvi ¼
vn

p

h
; ð25Þ
where Gip ¼ 1
h is the gradient of the linear shape function on the right node, and the above accounts for the fixed boundary

condition on the left node. Thus, Eq. (24) can be written in terms of time n values:
Fnþ1
p ¼ 1þ

vn
p

h
Dt

� �
Fn

p: ð26Þ
Moving forward in the timestep, the nodal force at the grid is the volume integral of the divergence of stress, computed as
f int
i ¼

X
p

Giprnþ1
p Vnþ1

p ; ð27Þ
where Vnþ1
p is the current particle volume. In one-dimension, Vnþ1

p ¼ Fnþ1
p V0

p. In addition, we have chosen the Neo-Hookean
constitutive relation with zero Poisson’s ratio
r ¼ E
2

F � 1
F

� �
; ð28Þ
where E is Young’s modulus. Combining these gives
f int
i ¼ E

2h

� �
ððFnþ1

p Þ2 � 1ÞV0
p: ð29Þ
Next, the nodal acceleration is the quotient of the internal force divided by the nodal mass, or Eq. (29) divided by Eq. (21).
Simplification gives
ai ¼
E
2 ððF

nþ1
p Þ2 � 1ÞV0

p

mpxn
p

: ð30Þ
We can now integrate the velocity at the node according to Eq. (16), using Eqs. (22), (26) and (30)
v�i ¼ vn
i þ

E
2 1þ vn

p
h Dt

� �
Fn

p

� �2
� 1

� �
V0

p

mpxn
p

Dt: ð31Þ
Finally, we can update the particle position and velocity according to Eqs. 17 and 18
xnþ1
p ¼ xn

p þ
xn

p

h
vn

p þ
E
2 1þ vn

p
h Dt

� �
Fn

p

� �2
� 1

� �
V0

p

mpxn
p

Dt

0
BB@

1
CCADt; ð32Þ

vnþ1
p ¼ vn

p þ
xn

p

h

E
2 Fnþ1

p

� �2
� 1

� �
V0

p

mpxn
p

Dt; ð33Þ
Simplifying gives expressions for position, velocity and deformation gradient at time nþ 1 in terms of those quantities at
time n for the USF approach
xnþ1
p ¼ xn

p þ vn
p

xn
p

h

� �
Dt þ E

2h
1þ

vn
p

h
Dt

� �
Fn

p

� �2

� 1

 !
V0

p

mp

 !
Dt2; ð34Þ
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vnþ1
p ¼ vn

p þ
E

2h
1þ

vn
p

h
Dt

� �
Fn

p

� �2

� 1

 !
V0

p

mp

 !
Dt; ð35Þ

Fnþ1
p ¼ 1þ

vn
p

h
Dt

� �
Fn

p: ð36Þ
By following the same procedure, similar expressions can be arrived at for the USL scheme. These are just stated here
xnþ1
p ¼ xn

p þ vn
p

xn
p

h

� �
Dt þ E

2h
ððFn

pÞ
2 � 1Þ

V0
p

mp

 !
Dt2; ð37Þ

vnþ1
p ¼ vn

p þ
E

2h
ððFn

pÞ
2 � 1Þ

V0
p

mp

 !
Dt; ð38Þ

Fnþ1
p ¼ 1þ

vn
p

h
þ

E
2 ððF

n
pÞ

2 � 1ÞV0
p

mpxn
ph

Dt

 !
Dt

 !
Fn

p; ð39Þ
The conclusion of this development is that, even for the simplest possible simulation, the resulting discrete equations are
non-linear in several variables. As such, classical stability analysis is not feasible. For this reason, we have turned to the
method of manufactured solutions to generate exact solutions for non-linear problems. By comparing algorithmic perfor-
mance against these, we can characterize the efficacy of the various approaches. First, we consider other candidate schemes
for time integration.
4. Centered-difference time integration

A number of families of time integration schemes have been investigated for use with GIMP including Runge–Kutta, Run-
ge–Kutta–Nystrom, Adams–Bashforth–Moulton (ABM), and Predictor–Corrector Newmark methods. In the authors’ experi-
ence, few of these methods have been able to achieve their formal orders of accuracy. For example, the Runge–Kutta family is
stable but offers no additional accuracy while incurring significantly greater computational cost. Not only is GIMP used for
highly discontinuous and non-linear problems (for which the ABM family is ill-suited) but the spatial idiosyncrasies of the
method tend to overwhelm any improvement that a temporally high order method might offer.

Significant trial-and-error experience has shown that successful algorithms for GIMP are 1. made from low order versions
of the given family of time integration schemes and 2. involve a mixture of explicit and implicit forms. The successful USL
and USF methods update grid velocity or particle stress explicitly (based on the current time step) then update remaining
variables based on the new time step.

Non-linear finite element codes often use a staggered central difference (CD) scheme [22] and such an approach is used
for MPM by Sulsky [14]. For the sake of clarity the method is written out in full using the notation of Section 2. In practice the
CD scheme is exactly the same as USL but for one crucial difference: initialization of particle velocity to a negative half time
step
mi ¼
X

p

Sipmp; ð40Þ

vn�1
2

i ¼

P
p

Sipvn�1
2

p mp

mi
; ð41Þ

rn
p ¼ rðFn

pÞ; ð42Þ

Vn
p ¼ V0

pjF
n
pj; ð43Þ

f int
i ¼ �

X
p

rSip � rpVp; ð44Þ

ai ¼
f int

i þ fext
i

mi
; ð45Þ

vnþ1
2

p ¼ vn�1
2

p þ
X

i

SipaiDt; ð46Þ
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vnþ1
2

i ¼ vn�1
2

i þ aiDt; ð47Þ

rvnþ1
2

p ¼
X

i

rSipvnþ1
2

i ; ð48Þ

xnþ1
p ¼ xn

p þ
X

i

Sipvnþ1
2

i Dt; ð49Þ

Fnþ1
p ¼ 1þrvnþ1

2
p Dt

� �
Fn

p; ð50Þ
For MPM as described in [18], an extra integration step is performed on the updated particle velocities to enhance stability.
Eq. 47 is replaced by
vnþ1
2

i ¼

P
p

Sipvnþ1
2

p mp

mi
: ð51Þ
We designate this modification to central difference time integration as ‘‘Update Velocity First”, or ‘‘UVF–MPM” in the sub-
sequent results section.

The negative 1/2 step data are available for known solutions, but for typical simulations they may be impossible to find.
An easier approach that works nearly as well, and is used for all of the cases in this paper, is to multiply the grid acceleration
values by 1/2 for the first time step only. This propagates the 1/2 through the algorithm correctly and fixes the first order
error that would otherwise be incurred.

Although a number of additional variations of explicit time integration algorithms have been investigated [11] we limit
our analysis to the methods discussed here that appear to be in widest use. Additionally, by providing details of the manu-
factured solutions, a framework exists by which interested readers may test their own variations
5. Method of manufactured solutions

Code verification has gained importance in recent decades as costly projects rely more heavily on computer simulations.
The method of manufactured solutions (MMS) [15–17] begins with an assumed solution to the model equations, and ana-
lytically determines the external force required to achieve that solution. This allows the user to verify the accuracy of numer-
ical implementations and to find where bugs may exist or improvements can be made. The critical advantage afforded by
MMS is the ability to test codes with boundaries or non-linearities for which exact solutions will never be known. It is argued
[15] that MMS is sufficient to verify a code, not merely necessary.

For this paper we define two non-linear large deformation dynamic manufactured solutions, and use both of them for
subsequent testing. The two solutions exercise the mathematical and numerical capabilities of the code and provide reliable
answers about its accuracy and stability.

Finite element method (FEM) texts often present total Lagrange and updated Lagrange forms of the equations of motion.
Both forms can be used successfully in a FEM algorithm, and solutions from both forms are equivalent [22]. However, it turns
out that it is necessary, or at least convenient, to manufacture solutions in the total Lagrange formulation. This might at first
appear to conflict with the fact that GIMP is always implemented in the updated Lagrange form. But the equivalence of the
two forms and the ability to map back and forth between them allows a manufactured solution in the total Lagrange form to
be validly compared to a numerical solution in the updated Lagrange form.

The equation of motion is presented in total and updated Lagrange forms, respectively:
rPþ q0b ¼ q0a; ð52Þ
rrþ qb ¼ qa; ð53Þ
where P is the 1st Piola–Kirchoff Stress; r is Cauchy Stress; q is density; b is acceleration due to body forces; and a is
acceleration.

Many complicated constitutive models are used successfully with GIMP but for our purposes the simple Neo-Hookean is
sufficient to test the non-linear capabilities of the algorithm. The stress is related in total and updated Lagrangian forms,
respectively:
P ¼ k ln JF�1 þ lF�1ðFFT � IÞ; ð54Þ

r ¼ k ln J
J

Iþ l
J
ðFFT � IÞ; ð55Þ
where u is displacement; X is position in the reference configuration; F ¼ Iþ ou
oX is the deformation gradient; J ¼j F j is the

Jacobian; l is shear modulus; and k is the Lamé constant.
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The acceleration b due to body forces is used as the MMS source term. The source term is manufactured such that the
equations of motion are satisfied. We simply declare that the displacement will follow some reasonable but probably
non-physical path, such as a sine function, and then determine the body force throughout the object that causes the assumed
displacement to occur.

Two 2D cases are drawn from the equation of motion and discussed in detail in the next two sections.
5.1. Axis-aligned displacement in a unit square

Displacement in a unit square is prescribed with normal components only. Through this choice, the corners and edges of
cpGIMP particles are coincident and colinear. This choice allows direct demonstration that GIMP can achieve the same spa-
tial accuracy characteristics in multiple dimensions that have been shown in a single dimension [1]. While it is not repre-
sentative of general material deformations, it does allow characterization of the error introduced via the inexact
approximations to cpGIMP, e.g. use of a constant sized particle characteristic function.

The plane strain displacement field is chosen to be
u ¼
A sinðpXÞ cosðcptÞ
A sinðpYÞ sinðcptÞ

0

0
B@

1
CA; ð56Þ
where X and Y are the scalar components of position in the reference configuration, t is time, A is the maximum amplitude of
displacement and c is wave speed such that c2 ¼ E

q0
where E is Young’s modulus.

The deformation gradient is found by taking derivatives with respect to position:
F ¼
1þ Ap cosðpXÞ cosðcptÞ 0 0

0 1þ Ap cosðpYÞ sinðcptÞ 0
0 0 1

0
B@

1
CA: ð57Þ
The stress is found by substituting Eq. 57 into 54:
P ¼

k
FXX

K þ l
FXX
ðF2

XX � 1Þ 0 0

0 k
FYY

K þ l
FYY
ðF2

YY � 1Þ 0

0 0 kK

0
BB@

1
CCA; ð58Þ
where K ¼ lnðFXXFYYÞ and the subscripts on u and F indicate individual terms of displacement and deformation gradient
equations.

Acceleration is found by twice differentiating displacement Eq. (56) in time. Finally, substituting stress P into Eq. 52 and
solving for the body force b (used as the MMS source term) it is found that
b ¼

p2uX
q0

k
F2

XX
ð1� KÞ þ l 1þ 1

F2
XX

� �
� E

h i
p2uY
q0

k
F2

YY
ð1� KÞ þ l 1þ 1

F2
YY

� �
� E

h i
0

0
BBB@

1
CCCA: ð59Þ
5.2. Radial expansion of a ring

Displacement is prescribed with radial symmetry for a ring as
uðRÞ ¼ A cosðcptÞðc3R3 þ c2R2 þ c1RÞ; ð60Þ
where R (and h) represent cylindrical coordinates in the reference configuration. A is the maximum magnitude of displace-
ment (10% of RO in this case), t is time, and c is the wave speed in the material. The constants c3, c2, and c1 are chosen so that
the field always provides for zero normal stress on the inner (RI) and outer (RO) surfaces of the ring and so that uðROÞ ¼ A
c3 ¼
�2

R2
OðRO � 3RIÞ

; c2 ¼
3ðRO þ RIÞ

R2
OðRO � 3RIÞ

; c1 ¼
�6RI

ROðRO � 3RIÞ
: ð61Þ
The Neo-Hookean constitutive model of Eq. 54 with zero Poisson’s ratio is used to make the manufactured solution tractable.
This is deemed acceptable because behavior for non-zero Poisson’s ratio has already been represented by the axis-aligned
problem. Free surfaces provide the complicating factor for this scenario.
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We relate the Cartesian components of displacement in terms of the reference coordinates X and Y where R2 ¼ X2 þ Y2
u ¼
A cosðcptÞðc3R3 þ c2R2 þ c1RÞ X

R

A cosðcptÞðc3R3 þ c2R2 þ c1RÞ Y
R

0

0
B@

1
CA: ð62Þ
Equations for velocity, acceleration, and deformation gradient are straightforward to find by differentiating Eq. (62) with re-
spect to time and position. It is more difficult to solve Eq. (54) (with zero Poisson’s ratio) for the MMS source term, and the
resultant equations are quite unwieldy. We use the Maple symbolic manipulation package to achieve a solution, and to gen-
erate C-compatible source code. The Maple commands that we used to do this are presented along with a brief description in
Appendix B. This should allow the reader to reproduce these results for testing their own codes.
6. Numerical results

As discussed above, GIMP does not lend itself to linear stability analysis and no analytical method has been seen by the
authors for predicting the behavior of the time integration schemes in this paper when used with GIMP. In lieu of analysis, a
series of numerical experiments are performed on cases chosen for their generality and applicability. A representative sam-
pling of results obtained is presented here.

In order to save on computational effort various reduced forms of GIMP are sometimes used as shape functions. For cases
denoted below as using cpGIMP, particle extents in each direction are approximated according to a three-dimensional ver-
sion of Eq. (7)
ln
p ¼ l0

pdiagðFn
pÞ: ð63Þ
Note that only for the axis-aligned displacement problem does this result in the deformed particles filling the spatial domain
exactly without any gaps or overlaps. For UGIMP the particle lengths are not changed: ln

p ¼ l0
p, while for MPM lp ¼ 0.

The definition of error is chosen with the total versus updated Lagrange formulations in mind. On each particle the exact
displacement in the total Lagrange form is related to the computed displacement in the updated Lagrange form by measuring
the error at each particle dp as the norm of the difference in computed displacement relative to the exact displacement
dp ¼ jjðxp � XpÞ � uexactðXp; tÞjj: ð64Þ
The definition for error at a node is more difficult; see Appendix A.
For the results of this paper we define a single pessimistic, but trustworthy, measure of error for a complete solution as

the L1 norm over all particles and all time steps
L1 ¼maxðdpÞ: ð65Þ
During the computation of results we also calculated the L1 and L2 norms for all scenarios. However, we found that they indi-
cated the same orders of accuracy as Eq. (65). For problems that are smooth in space and time, such as those used here, we
prefer the L1 norm because it assures us that all particles are converging. However, for problems involving discontinuities
such as contact or shocks, the L1 and L2 norms are appropriate.

6.1. Axis-aligned displacement

A series of simulations are carried out to measure temporal and spatial convergence. In each, the reference configuration
contains four equally-spaced particles per cell. Example results for particle displacement from one such simulation, using a
coarse 8 � 8 grid, are depicted in Fig. 2.
Fig. 2. Illustration of particle displacements at three representative times.
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6.1.1. Temporal convergence for axis-aligned displacement
The temporal convergence behavior is examined by measuring the error in displacement, as defined by Eq. (65), of com-

puted solutions over a range of CFL numbers. All solutions use 562 cells and the maximum magnitude of displacement
A ¼ 0:1 (from Eq. (56)) is large enough to cause the majority of particles to experience several cell crossings per period.
The test code is configured so that an error of one is returned whenever a particular solution crashes. Results for several
interesting combinations of time integration algorithm and shape function are plotted in Fig. 3. Below, we consider the re-
sults for each.

The USF–cpGIMP combination displays uninspiring behavior for the axis-aligned problem. Although it completes the
solution successfully for low CFL cases, its accuracy is poor and gets dramatically worse with increasing values of CFL.
Although Bardenhagen [3] showed that USF conserves energy better for infinitesimal linear elastic problems, he did not rec-
ommend using USF and the results found here indicate that its lack of dissipation becomes problematic for non-linear large
deformations. The algorithm becomes progressively less stable and imperfections in the solution are preserved and ampli-
fied. However, it must be noted that USF–MPM performs better than USL–MPM (neither of which are shown here, and nei-
ther of which performs better than the UVF–MPM in this simulation) because the velocity gradients are based on smooth
values of velocity that have not yet been updated by potentially inaccurate grid accelerations. The smoother spatial gradients
of GIMP enable the use of more delicate time integration schemes.

Use of the USL–cpGIMP combination results in a dramatic improvement over USF–cpGIMP with a reduction of error of up
to three orders of magnitude. Accuracy is preserved over a wide range of CFL conditions and the algorithm does not crash
until CFL > 0.7 or thereabouts. We draw attention to the curious ‘‘elbow” that is observed at about CFL = 0.2 wherein the con-
vergence rate changes from zero to one. Analysis of subsequent spatial convergence results will suggest that a close link be-
tween spatial and temporal phenomena in GIMP causes the elbow. We believe the elbow indicates a shift of dominant error
in USL–cpGIMP from spatial to temporal.

A minor modification to USL changes the algorithm to centered-difference (CD) (see Section 4) and eliminates the elbow.
The CD–cpGIMP combination displays the same accuracy regardless of CFL right up until CFL exceeds the stable limit of
roughly 0.7. By improving the time integration algorithm from USL to CD, temporal convergence is entirely eliminated. This
is evidence that spatial error dominates the CD–cpGIMP combination, so temporal effects are not observed. Experience with
a number of problems indicates that the CD–cpGIMP combination is the best all-around method; it is used as the benchmark
throughout this paper.

The small algorithmic difference between cpGIMP and UGIMP has a substantial effect on accuracy as shown in the CD–
UGIMP trend of Fig. 3. An order of magnitude in accuracy is lost by using UGIMP, but other traits of stability and general good
behavior are retained. The UGIMP results are likely more representative of real world behavior, as general deformations do
not retain the rectangular shape of the particles needed to fill the deformed domain exactly.

Lastly, we observe that the UVF–MPM of Sulsky et al. [18] is able to complete the solution over a range of CFL conditions
but accuracy is an order of magnitude worse than CD–cpGIMP. It has been our experience that MPM produces poor quan-
titative convergence when high stress and large deformation occur together, but can perform acceptably under less demand-
ing conditions.
6.1.2. Spatial convergence for axis-aligned displacement
The spatial convergence behavior is found by measuring the displacement error, as defined by Eq. (65), of computed solu-

tions over a range of mesh sizes. All solutions use CFL ¼ 0:4 and A ¼ 0:1. Convergence results are plotted in Fig. 4.
The USF–cpGIMP and UVF–MPM combinations display similar trends of spatial accuracy despite being based on different

time and spatial integration approaches. Both display unsatisfactory performance in that they fail to show convergence with
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decreasing cell size. However, we note with interest that neither method crashes, rather both continue to provide solutions
that are visually plausible even when their fundamental accuracy falters.

CD–UGIMP displays initially promising second order convergence, but accuracy is lost as the mesh is refined, due evi-
dently to the spatial integration error that results from constant sized particles not filling the domain exactly. USL–cpGIMP
displays second order convergence for coarse meshes but drops to first order for finer meshes. We continue to suppose that
this is due to the close coupling of spatial and temporal effects.

Finally, the CD–cpGIMP combination is satisfyingly second order in space. We are reminded that this excellent behavior is
only displayed for the special circumstances of the axis-aligned problem where no gaps or overlaps exist in the cell integra-
tion. The behavior of a more realistic problem is assessed in the next section.
6.2. Expanding ring

A series of simulations, each with four equally-spaced particles per cell, are carried out to measure temporal and spatial
convergence. Example results for particle displacement from one such simulation, using a coarse 8 � 8 grid, are depicted in
Fig. 5.
6.2.1. Temporal convergence for expanding ring
The temporal convergence behavior is found by measuring the error in displacement, as defined by Eq. (65), of computed

solutions over a range of CFL numbers. All solutions use 562 cells and A ¼ 0:1 from Eq. (62). The curved surfaces of the ring
are ‘‘stair-stepped” approximations in the particle representation. Temporal convergence results are generated for the
expanding ring in Fig. 6.

Temporal convergence trends are somewhat different for the expanding ring as compared to the axis-aligned problem.
UGIMP performs just as well as cpGIMP and USL performs better, compared to CD, than it did for the axis-aligned problem.
This suggests that common factors dominate the results for all the methods and we believe that the most important of these
is the gaps and overlaps in the particle representation that causes inaccuracies in the spatial integration due to non axis-
aligned displacements in the ring.
Fig. 5. Illustration of particle displacements at three representative times.
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While UVF–MPM appears to be the most stable algorithm, it is also significantly less accurate than the GIMP variations.
Lastly we note that USF displayed very poor performance and for this reason is omitted from the results shown in the next
section for spatial convergence.
6.2.2. Spatial convergence for expanding ring
Spatial convergence behavior, as presented in Fig. 7, is found by measuring the error, as defined by Eq. (65), of computed

solutions over a range of mesh sizes. All solutions use four initially equally-spaced particles per cell with CFL ¼ 0:4 and
A ¼ 0:1.

For the most part the trends display nominally first order convergence as compared to the second order convergence for
the axis-aligned solutions. USL has more error than CD simply because of its first order initialization error, which is observed
to decrease as time step sizes decrease. The loss of convergence that we expect to see with UGIMP occurs only at high res-
olution – the last point of the trend. UVF–MPM provides visually satisfactory solutions but it fails to converge.

The second order effects, seen in the axis-aligned problem, that differentiate USL and UGIMP from the CD–cpGIMP base-
line are less evident as the error is now dominated by the stair-stepped surface approximation and by gaps and overlaps
among adjacent particles in the spatial integration. Due to the deformation, the latter of these is not eliminated by a full
cpGIMP treatment of the particle sizes.
7. Conclusions

As demonstrated in Section 3 a formal stability analysis for MPM (or GIMP) is difficult, if not impossible, due to the non-
linear nature of the equations governing the advancement in time of position, velocity and deformation gradient. In lieu of
formal analysis, the method of manufactured solutions provides a suitable platform for testing stability and convergence
behavior. MMS was used here to determine this behavior for a selection of time integration schemes suitable for use with
GIMP. In addition, MMS allows investigation of non-linear, large deformation simulations for which GIMP is frequently
employed.
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Centered-difference (CD) time integration was shown to be closely related to the ‘‘update stress last” (USL) scheme, both
of which performed significantly better than the ‘‘update stress first” (USF) scheme when used with cpGIMP. Evidence of the
superiority of the CD and USL schemes is most apparent in light of stability and spatial convergence behavior. However, none
of these schemes were able to achieve their formal orders of accuracy for the simulations considered here. (Note that for
small deformation versions of these cases, convergence is significantly better.) This is evidently due to the comparatively
large amount of spatial error inherent in GIMP, even for the manufactured solution for which GIMP is ideally suited.

Via the axis-aligned displacement problem we show that the UGIMP approximation, in which particle sizes are assumed
to remain constant, eventually causes the accuracy to diverge with mesh refinement. Note that the strategy of Ma et al. [12]
for evolving particle shapes was not investigated here. Cursory testing of this idea showed some promise, but tracking the
particle corners with sufficient accuracy has proved challenging in general simulations. Specifically, near the edges of ob-
jects, particle corners will eventually migrate into cells, some of the nodes of which do not have well defined velocities.
In our experience, this often leads those corners into non-physical territory. Presumably, a solution to this difficulty exists,
but our efforts in this arena have been minimal.

While choice of time integration schemes has a large impact on the overall accuracy of a simulation, the ultimate conclu-
sion of this work is that, when the best of these choices is made, spatial error remains dominant. As such, future work will
concentrate on identification and reduction of specific spatial error sources.
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Appendix A. Nodal error in the current configuration

The definition for error at a node is complicated by the fact that the nodes of the computational ‘‘scratch pad” are station-
ary with respect to the current configuration, but move with respect to the reference configuration. The reference position of
a node is found by solving the following implicit equation for Xi using a simple root-finding subroutine
uexactðXi; tÞ ¼ xi � Xi; ðA:1Þ
where xi is the known position of the node i. Then the error in acceleration on a node, for example, could be defined as
di ¼ jjai � aexactðXi; tÞjj: ðA:2Þ
Appendix B. Example Maple commands for ring body force

The following Maple commands allow one to generate the body force for the ring problem in Section 5.2, and should be
generally useful in developing other manufactured solutions.

with(linalg);

Displacement is defined to be radially symmetric; R is radius in the reference configuration and T is a placeholder for
some function of time, which is later assumed to be trigonometric:

u:=T*(c3*Rˆ3+c2*Rˆ2+c1*R);

We first set out to find expressions for the coefficients c1—c3. Displacement in Cartesian coordinates in terms of radius R
and angle H can be written:

uc:=<u*cos(H),u*sin(H),0>;

Displacement gradient with respect to Cartesian coordinates in terms of R and H via the chain rule:

Gu:=evalm(matrix([

[diff(uc[1],R)*cos(H)-diff(uc[1],H)*sin(H)/R,

diff(uc[1],R)*sin(H)+diff(uc[1],H)*cos(H)/R,0],

[diff(uc[2],R)*cos(H)-diff(uc[2],H)*sin(H)/R,

diff(uc[2],R)*sin(H)+diff(uc[2],H)*cos(H)/R,0],

[0,0,0]]));
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Forming the deformation gradient:

I3:=matrix([[1,0,0],[0,1,0],[0,0,1]]);

F:=simplify(evalm(I3+Gu));

Evaluate stress assuming zero Poisson’s ratio. At this point the stress matrix, if written densely, fills nearly a page and is
difficult to handle. Symbolic math manipulation software is extremely helpful

P:=simplify(evalm(E/2*inverse(F)&*(F&*transpose(F)-I3)));

We find the constants of Eq. (61) by rotating the stress to an arbitrary angle H, which leaves just two diagonal components
in the stress tensor: normal stress and hoop stress.

Q:=matrix([[ cos(H),sin(H),0],

[-sin(H),cos(H),0],

[0,0,1]]);

PQ:=simplify(evalm(Q&*P&*transpose(Q)));]

We set the normal stress at the inner and outer radii to zero and scale displacement at the outer radius. The software finds
constants that satisfy these conditions. However, if Poisson’s ratio is not zero then closed forms for the constants cannot be
found.

Pb:=unapply(PQ[1,1],R);

ub:=unapply(u,R);

assume(Ri>0);
assume(Ro>Ri);
interface(showassumed=2);

solve({Pb(Ro)=0,Pb(Ri)=0,ub(Ro)=T},{c1,c2,c3});

With the coefficients of the displacement equation in hand, we find the divergence of stress in Cartesian coordinates in
terms of R and H via the same chain rule operator used above:

dP:=simplify(hdiff(P[1,1],R)*cos(H)-diff(P[1,1],H)*sin(H)/R
+diff(P[2,1],R)*sin(H)+diff(P[2,1],H)*cos(H)/R,

diff(P[1,2],R)*cos(H)-diff(P[1,2],H)*sin(H)/R

+diff(P[2,2],R)*sin(H)+diff(P[2,2],H)*cos(H)/R,

0>);

Finally we solve the momentum equation for b (assuming that T is of the form used in Eq. (60)) and generate optimized C-
style code (about a page and a half of it) that can be used to check our implementation of GIMP.

b:=evalm(-pî 2*E/rho*uc-1/rho*dP);

with(codegen,C):

C(b,optimized,mode=double);
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